1,804 research outputs found

    Anisotropic thermal magnetoresistance for an active control of radiative heat transfer

    Full text link
    We predict a huge anisotropic thermal magnetoresistance (ATMR) in the near-field radiative heat transfer between magneto-optical particles when the direction of an external magnetic field is changed with respect to the heat current direction. We illustrate this effect with the case of two InSb spherical particles where we find that the ATMR amplitude can reach values of up to 800% for a magnetic field of 5 T, which is many orders of magnitude larger than its spintronic analogue in electronic devices. This thermomagnetic effect could find broad applications in the fields of ultrafast thermal management as well as magnetic and thermal remote sensing.Comment: 6 pages, 4 figure

    Anaesthesia for serial whole-lung lavage in a patient with severe pulmonary alveolar proteinosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Pulmonary alveolar proteinosis is a rare condition that requires treatment by whole-lung lavage. We report a case of severe pulmonary alveolar proteinosis and discuss a safe and effective strategy for the anaesthetic management of patients undergoing this complex procedure.</p> <p>Case presentation</p> <p>A 34-year-old Caucasian man was diagnosed with severe pulmonary alveolar proteinosis. He developed severe respiratory failure and subsequently underwent serial whole-lung lavage. Our anaesthetic technique included the use of pre-oxygenation, complete lung separation with a left-sided double-lumen endotracheal tube, one-lung ventilation with positive end-expiratory pressure, appropriate ventilatory monitoring, cautious use of positional manoeuvres and single-lumen endotracheal tube exchange for short-term postoperative ventilation.</p> <p>Conclusion</p> <p>Patients with pulmonary alveolar proteinosis may present with severe respiratory failure and require urgent whole-lung lavage. We have described a safe and effective strategy for anaesthesia for whole-lung lavage. We recommend our anaesthetic technique for patients undergoing this complex and uncommon procedure.</p

    Direct Interactions in Relativistic Statistical Mechanics

    Get PDF
    Directly interacting particles are considered in the multitime formalism of predictive relativistic mechanics. When the equations of motion leave a phase-space volume invariant, it turns out that the phase average of any first integral, covariantly defined as a flux across a 7n7n-dimensional surface, is conserved. The Hamiltonian case is discussed, a class of simple models is exhibited, and a tentative definition of equilibrium is proposed.Comment: Plain Tex file, 26 page

    Crack-Like Processes Governing the Onset of Frictional Slip

    Full text link
    We perform real-time measurements of the net contact area between two blocks of like material at the onset of frictional slip. We show that the process of interface detachment, which immediately precedes the inception of frictional sliding, is governed by three different types of detachment fronts. These crack-like detachment fronts differ by both their propagation velocities and by the amount of net contact surface reduction caused by their passage. The most rapid fronts propagate at intersonic velocities but generate a negligible reduction in contact area across the interface. Sub-Rayleigh fronts are crack-like modes which propagate at velocities up to the Rayleigh wave speed, VR, and give rise to an approximate 10% reduction in net contact area. The most efficient contact area reduction (~20%) is precipitated by the passage of slow detachment fronts. These fronts propagate at anomalously slow velocities, which are over an order of magnitude lower than VR yet orders of magnitude higher than other characteristic velocity scales such as either slip or loading velocities. Slow fronts are generated, in conjunction with intersonic fronts, by the sudden arrest of sub-Rayleigh fronts. No overall sliding of the interface occurs until either of the slower two fronts traverses the entire interface, and motion at the leading edge of the interface is initiated. Slip at the trailing edge of the interface accompanies the motion of both the slow and sub-Rayleigh fronts. We might expect these modes to be important in both fault nucleation and earthquake dynamics.Comment: 19 page, 5 figures, to appear in International Journal of Fractur

    Rigorous Probabilistic Analysis of Equilibrium Crystal Shapes

    Full text link
    The rigorous microscopic theory of equilibrium crystal shapes has made enormous progress during the last decade. We review here the main results which have been obtained, both in two and higher dimensions. In particular, we describe how the phenomenological Wulff and Winterbottom constructions can be derived from the microscopic description provided by the equilibrium statistical mechanics of lattice gases. We focus on the main conceptual issues and describe the central ideas of the existing approaches.Comment: To appear in the March 2000 special issue of Journal of Mathematical Physics on Probabilistic Methods in Statistical Physic

    Random Tilings: Concepts and Examples

    Full text link
    We introduce a concept for random tilings which, comprising the conventional one, is also applicable to tiling ensembles without height representation. In particular, we focus on the random tiling entropy as a function of the tile densities. In this context, and under rather mild assumptions, we prove a generalization of the first random tiling hypothesis which connects the maximum of the entropy with the symmetry of the ensemble. Explicit examples are obtained through the re-interpretation of several exactly solvable models. This also leads to a counterexample to the analogue of the second random tiling hypothesis about the form of the entropy function near its maximum.Comment: 32 pages, 42 eps-figures, Latex2e updated version, minor grammatical change

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie
    • …
    corecore